ME309

Roll	No.				Ĺ	d	í					
TEGIL	7 40.										۰	٠

Spl. 2020

MECHANICAL ESTIMATING & COSTING

निर्धारित समय : तीन घंटे] [अधिकतम अंक : 70 Time allowed : Three Hours] [Maximum Marks : 70

नोट: (i) प्रथम प्रश्न अनिवार्य है, शेष में से किन्हीं तीन के उत्तर दीजिये।

Note: Question No. 1 is compulsory, answer any THREE questions from the remaining.

- (ii) प्रत्येक प्रश्न के सभी भागों को क्रमवार एक साथ हल कीजिये। Solve all parts of a question consecutively together.
- (iii) प्रत्येक प्रश्न को नये पृष्ठ से प्रारम्भ कीजिये। Start each question on fresh page.
- (iv) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- 1. (1) लागत का निर्धारण निम्न में से कौन करता है ?
 - (a) इंजीनियर

(b) सर्वेयर

(c) लेखाकार

(d) उपरोक्त में से कोई नहीं

Who decides the costing from the following?

- (a) An Engineer
- (b) Surveyor

(c) Accountant

- (d) None of above
- (2) प्राइम लागत से क्या अभिप्राय है
 - (a) पदार्थ लागत + श्रम लागत
- (b) पदार्थ लागत + फैक्ट्री लागत
- (c) पदार्थ लागत + प्रशासनिक लागत (d) श्रम लागत + फैक्ट्री लागत

What is meant by prime cost?

- (a) Material cost + Labour cost
- (b) Material cost + Factory cost
- (c) Material cost + Administrative cost
- (d) Labour cost + Factory cost

- (3) सम-विच्छेद बिन्दु निम्न में से कौन सा है ?
 - (a) कुल लागत रेखा व विक्रय मूल्य रेखा का प्रतिछेद बिन्दु।
 - (b) स्थिर लागत रेखा व कुल लागत रेखा का प्रतिछेद बिन्दु ।
 - (c) स्थिर लागत व विक्रय मूल्य रेखा का प्रतिछेद बिन्दु ।
 - (d) उपरोक्त में से कोई नहीं

Which of the following is the Break Even Point?

- (a) Intersect of Total cost line and Sales line
- (b) Intersect of Fixed cost line and Total cost line
- (c) Intersect of Fixed cost line and Sales cost line
- (d) None of the above
- (4) अप्रचलित होने का कारण है
 - (a) मशीनों का रखरखाव
- (b) तकनीकी में परिवर्तन
- (c) मजदूरों की संख्या बढ़ाना
- (d) मजदूरों की संख्या कम करना

What is the reason of obsolescence?

- (a) Maintenance of machines
- (b) Change in technology
- (c) Increasing labours
- (d) Decreasing the number of labours
- (5) वस्तु का द्रव्यमान ज्ञात करने का सूत्र है
 - (a) आयतन × घनत्व
- (b) क्षेत्रफल × घनत्व
- (c) आयतन / घनत्व
- (d) घनत्व / आयतन

Which is the formula to find mass of an object?

- (a) Volume × Density
- (b) Area × Density
- (c) Volume / Density
- (d) Density / Volume
- (6) एक शंकु के छिन्नक का आयतन ज्ञात करने का सूत्र है
 - (a) $\frac{\pi}{4} d^2 l$

(b) $\frac{h}{3} \left[a_1 + a_2 + \sqrt{a_1 a_2} \right]$

(c) $\frac{1}{3} \pi r^2 h$

(d) $\frac{\pi}{6} h^2 [3d - 2h]$

जबकी d – व्यास, l-तिर्यक लम्बाई, h-ऊँचाई r – त्रिज्या, a_1, a_2 क्षेत्रफल है ।

The formula used to find the volume of frustum of a cone is given by

(a) $\frac{\pi}{4} d^2 l$

(b) $\frac{h}{3} \left[a_1 + a_2 + \sqrt{a_1 a_2} \right]$

(c) $\frac{1}{3} \pi r^2 h$

(d) $\frac{\pi}{6} h^2 [3d - 2h]$

Where, d - diameter, l-conic length, h-height, r-radius, a1, a2 areas

- (7) टेलर अन्तर्युक्त कार्य दर विधि द्वारा कुशल मजदूर को निम्न प्रकार भुगतान किया जाता है :
 - (a) मानक मात्रा मूलक दर का 80%
- (b) मानक मात्रा मूलक दर का 100%
- मानक मात्रा मूलक दर का 120% (d) मानक मात्रा मूलक दर का 150%

Payment made to a skilled labour by Taylor's differential piece rate method is given by

- (a)
- 80% of standard piece rate (b) 100% of standard piece rate
- (c)
 - 120% of standard piece rate (d) 150% of standard piece rate
- प्रेरणात्मक मजद्री का अभिप्राय है
 - (a) मजदूरी की दर कम करना (b) बोनस व सुविधायें देना
 - मजद्री आधी करना
- (d) उपरोक्त में से कोई नहीं

What is meant by incentive wages?

- (a) Reduction in rate of labour
- Provide bonus and facilities (b)
- (c) Make the labour rate half
- None of the above (d)
- मशीनन समय की गणना निम्न द्वारा की जाती है:

(a)
$$T = L \times f \times N$$

(b)
$$T = \frac{f \times N}{L}$$

(c)
$$T = \frac{L}{f \times N}$$

(d)
$$T = L + f/N$$

जबिक T = समय, f = भरण दर, N = घूर्णन गति, L = कार्यखण्ड लम्बाई

Machining time is calculated by

(a)
$$T = L \times f \times N$$

(b)
$$T = \frac{f \times N}{I}$$

(c)
$$T = \frac{L}{f \times N}$$
 (d) $T = L + f/N$

$$(d) \quad T = L + f/N$$

Where T = time, f = feed rate, N = rotational speed, L = length of job

(a)

(c)

₹ 0.25

1048 (4 of 12) (10) एक छड़ का व्यास 80 से 40 mm करने के लिए 3 mm गहराई का काट दिया जाता है। काटों की संख्या कितनी होगी ? (b) (a) (d) (c) To reduce the diameter of a rod from 80 mm to 40 mm the depth of cut is 3 mm. The no. of cuts required will be (b) 7 (a) (d) 4 (c) (11) मृदु इस्पात धातु पर चूड़ी काटने हेतु काटों की संख्या निम्न हैं : (a) 4 (b) (d) (c) 5 For the thread cutting the number of cuts for mild steel metal are: 3 (b) (d) (c) 5 (12) वेल्डिंग में विद्युत खपत की गणना निम्न द्वारा की जाती है : (b) $P = \frac{V \times I}{\eta}$ (a) $P = \frac{V}{I} \times \eta$ (d) $P = V \times I \times \eta$ (c) $P = \frac{I}{V} \times \eta$ जबकी P= शक्ति, V= वोल्टेज, I= धारा (विद्युत) $\eta=$ दक्षता है । The consumption of electricity for welding is calculated by (b) $P = \frac{V \times I}{n}$ (a) $P = \frac{V}{I} \times \eta$ (c) $P = \frac{I}{V} \times \eta$ (d) $P = V \times I \times \eta$ Whereas P = power, V = Voltage, I = electric current and η = efficiency (13) 1 m लम्बी दो M.S. प्लेटों को जोड़ने के लिए यदि वेल्डिंग गति 10 m/hr व श्रम लागत ₹ 4/घंटा होने पर श्रम लागत निम्न होगी: ₹ 0.40 (a) उपरोक्त में से कोई नहीं (d) (c) ₹ 0.25 Two M.S. plates of 1 m length are joined by welding. If the welding speed is 10 m/hr and labour charge 4 rs/hr then the labour cost is given by following: ₹ 2.50 ₹ 0.40

None of above

(d)

(14)	धातु फोर्जिंग	में कार्यखण्ड	की लम्ब	ाई कम	करने व	व्यास	बढ़ाने व	ति क्रिया	निम्न	है	
------	---------------	---------------	---------	-------	--------	-------	----------	-----------	-------	----	--

डाइंग डाउन (a)

बेन्डिंग (b)

अपसेटिंग (c)

डाफ्टिंग (d)

To reduce the length and increase the diameter of a work piece in metal forging the process is called as

- (a) Drawing down
- (b) Bending

Upsetting (c)

(d) Drafting

(15) फोर्जिंग गणना में दमक हानि निम्न द्वारा ज्ञात की जाती है:

- परिधि + 20 mm + 3 mm
- (b)
- परिधि × 20 mm × 3 mm (d) उपरोक्त में से कोई नहीं

The flash losses in forging are calculated by

- Circumference + 20 mm + 3 mm (a)
- Circumference (b)
- Circumference × 20 mm × 3 mm (c)
- None of the above

(16) एक 1.5 cm भुजा की षट्कोणीय छड़ का अनुप्रस्थ काट का क्षेत्रफल होगा –

(a)
$$6 \times \frac{\sqrt{3}}{4} \times (1.5)^2 \text{ cm}^2$$

(a)
$$6 \times \frac{\sqrt{3}}{4} \times (1.5)^2 \text{ cm}^2$$
 (b) $6 \times \frac{\sqrt{3}}{2} \times (1.5)^2 \text{ cm}^2$

(c)
$$6 \times \frac{(1.5)^2}{4}$$
 cm²

(c)
$$6 \times \frac{(1.5)^2}{4} \text{ cm}^2$$
 (d) $6 \times \frac{\sqrt{3}}{4} \times 1.5 \text{ cm}^2$

For a hexagonal rod of side 1.5 cm, the cross sectional area will given by

(a)
$$6 \times \frac{\sqrt{3}}{4} \times (1.5)^2 \text{ cm}^2$$
 (b) $6 \times \frac{\sqrt{3}}{2} \times (1.5)^2 \text{ cm}^2$

(b)
$$6 \times \frac{\sqrt{3}}{2} \times (1.5)^2 \text{ cm}^2$$

(c)
$$6 \times \frac{(1.5)^2}{4}$$
 cm²

(c)
$$6 \times \frac{(1.5)^2}{4} \text{ cm}^2$$
 (d) $6 \times \frac{\sqrt{3}}{4} \times 1.5 \text{ cm}^2$

(17) पैटर्न बनाते समय ग्रे ढलवाँ लोहा धातु के लिए संकुचन छूट है

- 15 mm/m लम्बाई (a)
- 13 mm/m लम्बाई (b)
- 10 mm/m लम्बाई
- 21 mm/m लम्बाई (d)

The shrinkage allowance for pattern used for Grey cast iron is given by

- 15 mm/m length (a)
- 13 mm/m length (b)
- 10 mm/m length (c)
- 21 mm/m length (d)

- (18) एक उत्पाद के उत्पादन के लिए उत्पादन लागत ₹ 10.25, बिक्री उपरिव्यय ₹ 2.56 व लाभ ₹ 1.92 है। बिक्री मूल्य क्या होगा ?
 - ₹ 14.73 (a)

(b) ₹ 10.89

₹ 9.61 (c)

उपरोक्त में से कोई नहीं (d)

For producing a product, the production cost is ₹ 10.25, the sales overhead is ₹ 2.56 and profit is ₹ 1.92. What will be the sales price?

- ₹ 14.73 (a)
- (b) ₹ 10.89
- (c) ₹ 9.61

- (d) None of the above
- (19) 4.5 cm व्यास के कार्यखण्ड पर 2 थ्रेड/सेमी काटने के लिए पिच होगी
 - (a) $\frac{4.5}{2}$ cm

(b) $\frac{2}{4.5}$ cm

(c) $\frac{1}{2}$ cm

(d) 4.5×2 cm

2 thread/cm threads are cut on a 4.5 cm diameter work piece. The pitch will be

- (a) $\frac{4.5}{2}$ cm (b) $\frac{2}{4.5}$ cm
- (c) $\frac{1}{2}$ cm (d) 4.5×2 cm
- (20) पैटर्न बनाने वाला ₹ 80/दिन की दर पर उपलब्ध है । 6 घंटे कार्य करने पर श्रम लागत होगी, जबकी 1 दिन = 8 घंटे

 - (c) 80 × 8 × ₹ 6
- (d) उपरोक्त में से कोई नहीं

A pattern maker is available at a rate of ₹ 80/day. If he works for 6 hours, what will be labour cost if 1 day = 8 hrs?

- (a) $\frac{80}{6} \times \text{ ? 8}$
- (b) $\frac{80}{8}$ × ₹ 6
- (c) 80 × 8 × ₹ 6
- (d) None of above

~ (21)	एक शंकाकार वस्तु जिसका व्यास 12 cm	n व ऊँचाई 10 cm है,	के वक्राकार	भाग को शीट से	ढकना
	है। शीट का क्षेत्रफल क्या होगा ?		distribution of		

(7 of 12)

(a) 200 cm^2

(b) 280 cm²

(c) 211.6 cm²

(d) 220 cm²

The curved surface of a conical object of diameter 12 cm and height 10 cm is to be covered by a sheet. What will be the area of sheet?

(a) 200 cm^2

(b) 280 cm^2

(c) 211.6 cm²

(d) 220 cm^2

(22) शीट का अवयव बनाने हेतु इसे मोड़ा जाता है यदि मोड़े हुए भाग द्वारा केन्द्र पर अन्तरित कोण θ° तथा त्रिज्या r हो, तो मोड़े हुए भाग की लम्बाई क्या होगी ?

(a) $2\pi r \times \frac{180}{\theta}$

(b) $2\pi r \times \frac{\theta}{180}$

(c) $2\pi r \times \frac{\theta}{360}$

(d) $2\pi r \times \frac{360}{\theta}$

For making cylindrical shapes from sheet, it is bent at θ° angle subtended through center. If r is the radius of bend, what will be length for bending?

(a) $2\pi r \times \frac{180}{\theta}$

(b) $2\pi r \times \frac{\theta}{180}$

- (c) $2\pi r \times \frac{\theta}{360}$
- (d) $2\pi r \times \frac{360}{\theta}$

(23) प्राकलन का निर्धारण किसके द्वारा किया जाता है ?

(a) लेखाकार

(b) प्रबंधक

(c) अभियन्ता

(d) मालिक

Estimating is done by

- (a) An Accountant
- (b) Manager

(c) An engineer

(d) Owner

(24)	पेन व	बनाने वाली औद्योगि	क इकाई में ₹	250 प	दार्थ लागत,	₹ 100 मजद्	री लागत, ₹ 50) ऑफिस
		त होता है। यदि लाभ						
	(a)	₹ 410		(b)	₹ 425			
	(c)	₹ 440		(d)	₹ 450			
/ / / · · · · · · · · · · · · · · · · ·		n pen making indice Cost is ₹ 50. I						
	(a)	₹ 410		(b)	₹ 425	ality book	, i divai	
	(c)	₹ 440	280 085	(d)	₹ 450			
(25)	घार्ता	चेपिटिकरण (प्लेनिः	शंग) प्रक्रिया क	या है ?				
	(a)	शीट को काटना	ne esta a s	(b)	शीट में छे	द करना		
	(c)	शीड के कोनों को	मोड़ना	(d)	शीट की र	् बोखली सतह र	में मोड़ को दूर व	हरना
	Wha	at is planishing p	rocess?					
	(a)	To cut the shee	t 100 × 415					
	(b)	To make a hole	in sheet					
	(c)	To bend the she	eet corners					
	(d)	Removal of ber	nds from hol	llow su	rfaces of	sheet		
(26)	मशीन	ान को फेसिंग संक्रिय	ा में जॉब व्यास	'D' हो	ने पर काट ल	गम्बाई है :		
	(a)	D		(b)	D/2			
	(c)	D/4	681 813	(d)	2D			
	In fa	cing operation of	f machining,	if dia	meter of jo	b is 'D' len	gth of cut wi	ll be:
	(a)	D	12. 227	(b)	D/2			
	(c)	D/4		(d)	2D			
(27)	बेलन	ाकार ग्राइडिंग में W	पहिये की चौड़ा	ई होने प	ार रूक्ष कट र	के लिए भरण प्र	प्रति चक्र होती है	?
	(a)	W/4		(b)	\mathbf{w}		ses in	
	(c)	W/2		(d)	2W			20
	In cy	vlindrical grindin ough cut will be:	g, if W is th	ne widt	th of whee	l, the value	of feed per	revolution
	(a)	W/4		(b)	W	* Negation	il de (g)	
	(c)	W/2	150000	(d)	2W			
			3. X.					

(28)	कार्य	मूल्यांकन के रैंकिंग विधि में कौन स	ग तथ्य इ	राामिल नहीं है ?
	(a)	कार्य की मात्रा	(b)	निरीक्षण
	(c)	उत्तरदायित्व	(d)	औद्योगिक इकाई
	Whi	ch fact is not included in Ra	nking n	nethod for job evaluation?
	(a)	Quantity of work	(b)	Inspection
	(c)	Responsibility	(d)	Industrial unit
(29)	एक	स्पिण्डल में 10 cm गहरा छिद्र f	केया ज	ाता है । यदि कर्तन गति 350 rpm व भरण दर
	0.2 1	mm/rev हो, तो छिद्र करने में समय	लगेगा	
	(a)	2.42 मिनट	(b)	1.43 मिनट
	(c)	1.82 मिनट	(d)	2.23 ਸਿਜਟ (t)
	A 10	0 cm deep hole is made in a	spindle	e. If cutting speed is 350 rpm and feed rate is
	0.2 1	mm/rev, the time taken to ma	ke the	
	(a)	2.42 min	(b)	1.43 min
	(c)	1.82 min	(d)	2.23 min
(30)	विक्र	य मूल्य का सूत्र है		
	(a)	कुल लागत + लाभ	(b)	कुल लागत – लाभ
	(c)	प्राइम लागत + लाभ	(d)	प्राइम लागत – लाभ
	The	formula for sales price is	de's 1	Latercary on the associated 906
	(a)	Total cost + Profit	(b)	Total cost - Profit
	(c)	Prime cost + Profit	(d)	Prime cost – Profit (1×30)

- (i) कार्य मूल्यांकन को समझाइए । कार्य मूल्यांकन की विधियों का वर्णन कीजिए ।
 Explain job evaluation. Describe the methods of job evaluation.
 - (ii) 9.5 mm मृदु इस्पात व 6 mm इलेक्ट्रोड से वेल्डिंग द्वारा एक लेप जोड़ का निर्माण करना है। धारा 250 ऐम्पियर, वोल्टेज 30 V, वेल्डिंग गति 12 m/घंटा व 0.34 kg धातु प्रति मीटर जोड़ पर जमा है। श्रम लागत ₹ 25/घंटा, शक्ति ₹ 0.20/kWh व इलेक्ट्राड ₹ 40/kg, मशीन की दक्षता 50%, परिचालन गुणांक 60% है। श्रमिक लागत, शक्ति लागत व इलेक्ट्रोड/m की लागत ज्ञात कीजिए।

A lap joint is prepared by welding for 9.5 mm M.S. plates using 6 mm electrode. The current is 250 A, voltage is 30 V, welding speed is 12 m/hr and 0.34 kg metal/m is deposited on the joint. The labour charges are ₹ 25/hr, power charge is ₹ 0.20/kWh and electrode ₹ 40/kg, the efficiency of machine is 50%, operation factor is 60%. Find labour cost, power cost and cost of electrode/m. (6+71/3)

- पैटर्न, मोल्ड व कास्टिंग को समझाइए । पैटर्न छूट को संक्षेप में स्पष्ट कीजिए ।
 Explain pattern, mould and casting. Explain the pattern allowances in brief.
 - (ii) 300 cm × 100 cm × 2 mm आकार की चादर से चित्र (1) के अनुसार किसी अवयव के 500 पीस बनाने हैं। बिना कोई पदार्थ व्यर्थ किए इसी प्रकार की कितनी चादरों की आवश्यकता होगी ?

चित्र (1)

500 pieces of a part are prepared by a sheet of 300 cm \times 100 cm \times 2 mm as per Figure (1). How much such sheets will be required assuming no wastage of material? (6+7 $\frac{1}{3}$)

Figure (1)

- (i) टेलर अन्तर्युक्त कार्य दर विधि व मैरिक अन्तर्युक्त कार्य दर विधि में अन्तर स्पष्ट कीजिए।
 Explain the difference between Taylor's differential piece rate method and Merric's differential piece rate method.
 - (ii) 3 cm भुजा व 25 cm लम्बाई की एक वर्गाकार छड़ को हस्त फोर्जिंग द्वारा 1.5 cm प्रत्येक भुजा के षट्कोणीय छड़ में रूपान्तरित किया गया है। षट्कोणीय छड़ की लम्बाई बतायें यदि स्केल क्षति 7% है।

A square bar of side 3 cm and length 25 cm is converted into a hexagonal bar of side 1.5 cm each by hand forging. Calculate the length of hexagonal bar if scale loss is 7%. (6+ $7\frac{1}{3}$)

- (i) सम-विच्छेद बिन्दु को समझाइए इसके लाभ भी लिखिए।
 Explain Break Even Point. Write its advantages also.
 - (ii) एक मृदुइस्पात कार्यखण्ड का 2 cm बोर का व्यास व 2 cm लम्बा है। इस पर 4 थ्रेड/cm आन्तरिक चूड़ियाँ काटने के लिए समय की गणना कीजिए। जबकि कटिंग गति 12 m/min हो। अप्रोच व ओवर ट्रेवल को माने।

A mild steel job is of 2 cm bore dia. and 2 cm length. 4 threads/cm internal threads are cut on it. Calculate the time required to cut the threads if cutting speed is 12 m/min. Consider approach and over travel lengths.

(6+71/3)

- (i) प्राकलन व लागत में अन्तर स्पष्ट कीजिए।
 Differentiate between estimating and costing.
 - (ii) चित्र (2) में प्रदर्शित खराद केन्द्रक का द्रव्यमान ज्ञात कीजिए एवं लागत की गणना कीजिए यदि पदार्थ का घनत्व $e = 7.8 \times 10^3 \, \mathrm{kg/m^3}$ व लागत ₹ $8.0/\mathrm{kg}$ है ।

All Dimensions are in mm.

Find the mass of lathe centre shown in Figure (2). Also calculate the cost if density of material $e = 7.8 \times 10^3 \text{ kg/m}^3$ and cost of material is $\stackrel{?}{\stackrel{?}{$\sim}} 8.0/\text{kg}$ (6+71/3)

Figure (2)

All Dimensions are in mm.

- 7. (i) फोर्जिंग आगणन की प्रक्रिया समझाइए।
 - Explain the process of forging estimation.
 - (ii) एक फर्म प्रतिदिन 100 पेनों का निर्माण करती है इसमें प्रत्येक्ष पदार्थ लागत ₹ 160, प्रत्यक्ष श्रम लागत ₹ 200 एवं उपरिव्यय ₹ 250 होता है। यदि विक्रय उपरिव्यय फैक्ट्री लागत का 40% हो, तो प्रत्येक पेन का मूल्य क्या होना चाहिए जब प्रत्येक पेन से 14.6% लाभ कमाना हो ?

A firm manufactures 100 pens per day in which direct material cost is ₹ 160, direct labour cost is ₹ 200 and overheads are ₹ 250. If selling on cost is 40% of factory cost. Find selling price of each pen so that the firm can earn profit of 14.6% of selling price on each pen.

(6+7½)