MR307

Roll	Nο	٠			
TAULL	1 10.	•	 	 	•

Spl. 2018 A/C DESIGN & DRAWING

निर्धारित समय : तीन घंटे।

अधिकतम अंक : 70

Time allowed: Three Hours

[Maximum Marks: 70

नोट :

(i) किन्हीं **चार** प्रश्न के उत्तर दीजिये।

Note:

Answer any **FOUR** questions.

- (ii) प्रत्येक प्रश्न के सभी भागों को क्रमवार एक साथ हल कीजिये।
 Solve all parts of a question consecutively together.
- (iii) प्रत्येक प्रश्न को नये पृष्ठ से प्रारम्भ कीजिये। Start each question on fresh page.
- (iv) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- (i) स्तरण वातानुकूलन भार गणना को किस प्रकार प्रभावित करता है ?How does stratification affects the air-conditioning load calculation ?
 - (ii) आंतरिक एवं बाह्य अभिकल्पन परिस्थितियों का चयन किस आधार पर किया जाता है ? How indoor and outdoor design conditions are selected?
 - (iii) तंत्र ऊष्मा प्राप्ति से आप क्या समझते हैं ? इसकी गणना किस प्रकार की जाती है ? What do you understand from system heat gain ? How is it calculated ?
 - (iv) वाष्पनिक शीतलन में पंखे के चयन को समझाइये। Explain selection of fan in evaporative cooling system.
 - (v) वाहिका अभिकल्पना की स्थैतिक पुनः प्राप्ति विधि के क्या लाभ हैं ? What are the advantages of static regain method of duct design?

 $(3\frac{1}{2} \times 5)$

2. आपकी संस्था के पुस्तकालय भवन के ग्रीष्म वातानुकूलन हेतु वातानुकूलन भार गणना की विधि को विस्तारपूर्वक समझाइये।

Explain the procedure for calculating heat load for summer air-conditioning of library of your institute in detail. (17½)

3. निम्न आँकडे एक कार्यालय भवन से संबंधित हैं :

बाह्य अभिकल्पन परिस्थितियाँ

35°से. DBT, 28°से. WBT

आंतरिक अभिकल्पन परिस्थितियाँ

25°से. DBT, 50%. RH

कक्ष संवेद्य ऊष्मा प्राप्ति

50 किलोवाट

कक्ष गुप्त ऊष्मा प्राप्ति

10 किलोवाट

संवातन वाय्

60 मी.³/मिनट

कुंडली का उपमार्ग गुणक 0.1 है, तो ज्ञात कीजिए :

- (i) उपकरण ओसांक बिन्दु
- (ii) अनाद्रिकृत वायु की मात्रा
- (iii) कुंडली में प्रवेशित वायु का तापमान
- (iv) कुंडली से निकलने वाली वायु का तापमान

The following date are related to an office building:

Outside design conditions

35 °C DBT, 28 °C WBT

Inside design conditions

25 °C DBT, 50% RH

Room sensible heat gain

50 kW

Room latent heat gain

10 kW

Ventilation Air

60 m³/min

Coil bypass factor is 0.1, determine:

- (i) Apparatus dew point.
- (ii) Quantity of dehumidified air.
- (iii) Temperature of air entering the coil.
- (iv) Temperature of air leaving the coil

 $(17\frac{1}{2})$

- (i) संवातन वायु के भार की गणना किस प्रकार की जाती है ? विस्तारपूर्वक वर्णन कीजिए ।
 How load of ventilation air is calculated ? Explain in detail.
 - (ii) काँच से आने वाले सोलर तथा ट्रांसिमशन ऊष्मा भार को कम करने के उपायों का विस्तारपूर्वक वर्णन कीजिये ।

Explain in detail the methods used for reducing solar and transmission heat gain through glass.

- (iii) वाष्पनिक शीतलन तंत्र एवं वातानुकूलन में क्या अन्तर है ? समझाइये।
 What is the difference between evaporative cooling system and air conditioning ?
 Explain. (6+6+5½)
- 5. एक वाहन पार्किंग स्थल (30 मी. × 60 मी. × 4 मी. ऊँचाई) के लिए समान घर्षण विधि द्वारा निकास वाहिका की अभिकल्पना कीजिये तथा चित्र बनाइये। निकास वायु की मात्रा 6 वायु परिवर्तन प्रति घंटा है।

 Design and draw duct layout for exhaust air duct with equal friction method for a vehicle parking space (30 m × 60 m × 4 m high). Exhaust air quantity is 6 air change per hour.

 (17½)
- 6. निम्न पर संक्षिप्त टिप्पणियाँ लिखिये:

Write short notes on followings:

- (i) वाहिका तंत्र में क्षेत्रीकरण Zoning in duct system
- (ii) वाष्पनिक शीतलन में पम्प का चयन Selection of pump in evaporative cooling
- (iii) ऊष्मा संग्रहण का वातानुकूलन भार गणना पर प्रभाव

 Effect of heat storage on air conditioning load calculation (6+6+5½)