CC303/CE303

Roll No.:....

DESIGN OF R.C.C. STRUCTURE

निर्धारित समय : 1/2 घंटा]

Time allowed: $\frac{1}{2}$ Hour]

[अधिकतम अंक : 30

[Maximum Marks: 30

नोट :

(i) सभी प्रश्न अनिवार्य हैं एवं प्रत्येक प्रश्न 1 अंक का है।

Note:

All Questions are compulsory and each question is of 1 mark.

- (ii) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- IS 456: 2000 के अनुसार प्रबलित कंक्रीट के लिए मृदु एक्सणंजर में कंक्रीट का न्युनतम ग्रेड होणा -
 - (a) M25
 - (b) M20
 - (c) M30
 - (d) M15
- 2. M30 ग्रेड की कंक्रीट की अभिलाक्षणिक सम्पोइन सामर्थ्य होगी -
 - (a) 30 N/m^2
 - (b) 30 kN/mm²
 - (c) 30 N/mm²
 - (d) 30 kg/cm^2

- 1. As per IS 456: 2000 the minimum grade of concrete for reinforced concrete in mild exposure shall be
 - (a) M25
 - (b) M20
 - (c) M30
 - (d) M15
- 2. The characteristic compressive strength of M30 grade concrete shall be
 - (a) 30 N/m^2
 - (b) 30 kN/mm^2
 - (c) 30 N/mm^2
 - (d) 30 kg/cm^2

P.T.O.

- 3. कार्यकारी प्रतिबल विधि निम्न ॥र आधारित है -
 - (a) सुघट्य सिदान्त
 - (b) प्रत्यास्थ सिद्धान्त
 - (c) चरम भार सिद्धान्त
 - (d) सुघट्-प्रत्यास्थ सिद्धान्त
- 4. ढहने की सीमान्त दशा में इस्पात के लिए आंशिक सुरक्षा पुणांक होता है -
 - (a) 1.15
 - (b) 1.50
 - (c) 1.20
 - (d) 1.00
- 5. बकंन (फ्लेग्ज़र) में ढहने की सीमान्त दशा के लिए कंक्रीट में अधिकतम प्रतिबल को माना । ाता है -
 - (a) f_{ck}
 - (b) $0.67 f_{ck}$
 - (c) $\frac{0.67 \, f_{ck}}{1.15}$
 - (d) $\frac{0.67 \, f_{ck}}{1.5}$

 $\ \square$ हाँ \mathbf{f}_{ck} कंक्रीट की अभिलाक्षणिक सामर्थ्य है ।

- Fe250 ग्रेड इस्पात युक्त आर.सी.सी. धरन के लिए उदासीन अक्ष की □ हराई का सीमान्त मान है -
 - (a) 0.45 d
 - (b) 0.46 d
 - (c) 0.48 d
 - (d) 0.53 d

जहाँ d धरन की प्रभावी गहराई है ।

- 3. The working stress method is based on
 - (a) plastic theory
 - (b) elastic theory
 - (c) ultimate load theory
 - (d) elasto-plastic theory
- 4. The partial safety factor for steel in limit state of collapse is
 - (a) 1.15
 - (b) 1.50
 - (c) 1.20
 - (d) 1.00
- 5. Maximum stress in concrete for the limit state of collapse in flexure assumed to be is
 - (a) f_{ck}
 - (b) $0.67 f_{ck}$
 - (c) $\frac{0.67 f_{ck}}{1.15}$
 - (d) $\frac{0.67 \, f_{ck}}{1.5}$

Where, \mathbf{f}_{ck} is characteristic strength of concrete

- 6. The limiting value of depth of neutral axis for RCC beam reinforced with Fe250 grade steel is
 - (a) 0.45 d
 - (b) 0.46 d
 - (c) 0.48 d
 - (d) 0.53 d

Where d is the effective depth of the beam.

- 7. शुद्ध आलम्बित आर.सी.सी. घरनों में आलम्बों पर या के पास क्षेतिए से 45° कोण पर निम्न कारण से दरारें उत्पन्न हो सकती हैं-
 - (a) ऍठन
- (b) विकर्ण तनाव
- (c) बंकन आधूर्ण
- (d) उधरोक्त सभी
- 8. सामान्य दशाओं में IS456:2000 के अनुसार कंक्रीट अवयव की सतह पर दरार की चौड़ाई निम्न से अधिक नहीं होनी चाहिए -
 - (a) 0.1 mm
 - (b) 0.3 mm
 - (c) 0.2 mm
 - (d) 31 रोक्त में से कोई नहीं
- 9. 10 मीटर वाट तक की एकल प्रबलित शुद्ध आलम्बित कंक्रीट घरन के अभिकल्वन हेतु वाट से वहराई (प्रभावी) का अनुवात का मूल मान निम्न से अधिक नहीं होना चाहिए -
 - (a) 7
- (b) 15
- (c) 20
- (d) 26
- 10. एकल प्रबलित घरन में तनाव प्रबलन का अधिकतम क्षेत्रफल निम्न से अधिक नहीं होना चाहिए -
 - (a) bD का 4%
 - (b) bD का 6%
 - (c) bD 可 0.12%
 - (d) bD का 0.04%

□ हाँ b a D क्रमशः घरन की चौड़ाई एवं कुल □ हराई हैं।

- 7. At or near the supports; the concrete of simply supported beams may split at 45° angle with horizontal due to
 - (a) torsion
 - (b) diagonal tension
 - (c) bending moment
 - (d) All of the above
- 8. As per IS 456: 2000 under normal conditions, crack width at the surface of concrete element should not exceed
 - (a) 0.1 mm
 - (b) 0.3 mm
 - (c) 0.2 mm
 - (d) None of the above
- 9. For designing singly reinforced simply supported concrete beam of span upto 10 m basic value of the span to effective depth ratio should not greater than
 - (a) 7
- (b) 15
- (c) 20
- (d) 26
- 10. The maximum area of tension reinforcement for singly reinforced beam shall not exceed
 - (a) 4% of bD
 - (b) 6% of bD
 - (c) 0.12% of bD
 - (d) 0.04% of bD

Where b and D are width and overall depth of the beam respectively.

- ॻिस आर.सी.सी. धरन के तनाय एवं सम्मीइन क्षेत्र में इस्पात प्रयुक्त किया □ ाता है, यह कहलाती है -
 - (a) एकल प्रयतित घरन
 - (b) सतत धरन
 - (c) प्रास धरन
 - (d) दोहरी प्रबलित धरन
- 12. किसी भी स्थिति में टी-धरन के फ्लैं। की प्रभावी चौड़ाई निम्न से अधिक नहीं होनी चाहिए
 - (a) bw + b
 - (b) $bw + \frac{1}{2}(L_1 + L_2)$
 - (c) $\frac{1}{2}(L_1 + L_2) bw$
 - (d) b bw

 $\ \square$ हाँ bw वेब की चौड़ाई, $\ L_1$ और $\ L_2$ धरन के दोनों तरफ की आसन्न धरनों के बीच स्पष्ट दूरियां हैं तथा $\ b$ फ्लें $\ \square$ की वास्तविक चौड़ाई है $\ \$

- 13. स्लैब में समानान्तर मुख्य प्रबलन छड़ों के मध्य क्षेति॥ दूरी निम्न से अधिक नहीं होणी
 - (a) 3d या 300 mm
 - (b) 7d
 - (c) 400 mm
 - (d) 5 d

जहाँ 'd' स्लैब की प्रभावी गहराई है ।

- 11. The beam in which the steel reinforcement is placed in the tension as well as compression zone is called -
 - (a) singly reinforced beam
 - (b) continuous beam
 - (c) cantilever beam
 - (d) doubly reinforced beam
- 12. In no case the effective width of flange of a T-beam should not exceed
 - (a) bw + b
 - (b) $bw + \frac{1}{2}(L_1 + L_2)$
 - (c) $\frac{1}{2}(L_1 + L_2) bw$
 - (d) b bw

Where bw is breadth of the web, L_1 and L_2 are the clear distances to the adjacent beams on either side and b is the actual width of the flange.

- 13. The horizontal distance between parallel main reinforcement bars of slab shall not be more than
 - (a) 3d or 300 mm
 - (b) 7d
 - (c) 400 mm
 - (d) 5 d

Where d is the effective depth of slab.

- 14. यदि के or अनुपात 2 से कम है तो स्लैंब है -
 - (a) दि दिश स्लैब
 - (b) एकल दिश स्लैब
 - (c) प्राश (केन्टीलीवर) स्लैब
 - (d) फ्लेट स्लैब
- 15. स्लैंब में प्रबलन छड़ों का अधिकतम व्यास हो सकता है -
 - (a) स्तेब की कुल मोटाई
 - (b) स्लेब की कुल मोटाई
 - (c) स्लेब की कुल मोटाई
 - (d) स्लेब की कुल मोटाई 20
- 16. यन-वे स्लैब में मुख्य प्रबलन छड़ें ला। यी । ती हैं -
 - (a) दोनों दिशाओं में
 - (b) बड़े 🛛 ट की दिशा में
 - (c) छोटे 🛛 ट की दिशा में
 - (d) किसी भी दिशा में

- 14. If the ratio $\frac{\text{longer span}}{\text{shorter span}}$ is less than 2, then slab is
 - (a) two-way slab
 - (b) one-way slab
 - (c) cantilever slab
 - (d) flat slab
- 15. Maximum diameter of the reinforcing bars in slab may be equal to
 - (a) total thickness of slab
 4
 - (b) total thickness of slab
 8
 - (c) total thickness of slab

 16
 - (d) $\frac{\text{total thickness of slab}}{20}$
- In one way slab main reinforcement bars are provided along
 - (a) both the directions
 - (b) longer span direction
 - (c) shorter span direction
 - (d) any direction

- 17. स्तम्भ की प्रभावी सम्बाई निम्न पर निर्भर करती है -
 - (a) स्तम्भ का प्रकार
 - (b) स्तम्भ की 💵 विमाओं 🛭 र
 - (c) स्तम्भ की आकृति
 - (d) सिरों की अवरुद्धता के प्रकार
- 18. स्तम्भ की अनुदेध्य छड़ों के लिए नामीय आवरण होता है-
 - (a) 20 mm
 - (b) 25 mm
 - (c) 40 mm
 - (d) 50 mm
- सम्पीइन में ले□ लम्बाई का न्यूनतम मान होता है -
 - (a) 15 ¢
 - (b) 24 ¢
 - (c) 30 ¢
 - (d) 25 ¢

Ε हाँ φ लै। किये । नि वाले सरिये का व्यास
 है ।

- 17. The effective length of a column depend upon
 - (a) the type of column.
 - (b) the lateral dimensions of the column.
 - (c) the shape of the column.
 - (d) the type of end restraints.
- 18. The nominal cover to the longitudinal bars of a column is
 - (a) 20 mm
 - (b) 25 mm
 - (c) 40 mm
 - (d) 50 mm
- 19. The minimum value of the lap length in compression is
 - (a) 15 ¢
 - (b) 24 φ
 - (c) 30 ¢
 - (d) 25 ¢

Where the ϕ is the diameter of bars to be lapped.

काट की दरी होती है -

- 20. IS456:2000 के अनुसार फुटिंग अभिकलान में वन-वे कर्तन विफलन के लिए क्रान्तिक
 - (a) स्तम्भ की 🛮 रिमिति से शून्य
 - (b) स्तम्भ की सतह से d
 - (c) स्तम्भ की सतह से d/2
 - (d) 30 रोक में से कोई नहीं जहाँ d फूटिंग स्लेब की प्रभावी गहराई है।
- 21. एक आर.सी.सी. स्तम्भ, 1 850KN भारवहन करता है, के लिए 190 kN/m² सुरक्षित धारण क्षमता वाली मृदा 1र फूटिं। अभिकल्पित करने के लिए फूटिं। का आवश्यक क्षेत्रफल हो।।
 - (a) 4.92 m^2
- (b) 2.47 m^2
- (c) 7.38 m^2
- (d) 6.71 m^2
- 22. अभिकल्पन की सीमान्त अवस्था विधि में दिदिश कर्तन द्वारा वर्णाकार फूटिंप की पहराई जात करने के लिए क्रान्तिक काट पर अधिकतम अनुजेय कर्तन प्रतिबल का मान लेते हैं । बिक फूटिंप में कर्तन प्रबलन प्रयुक्त महीं है -
 - (a) $0.25 \sqrt{\frac{f_{ck}.k_s}{2}}$
 - (b) $0.16\sqrt{f_{ck}}$
 - (c) $0.25\sqrt{f_{ck}}$
 - (d) $0.16 \sqrt{f_{ck}.k_s}$

 $\ \square$ हाँ f_{ck} कंक्रीट की सम्पीडन अभिलाक्षणिक सामर्थ्य है य k_s का $\ \$ मान 1 है $\ \$

- 20. As per IS 456: 2000, the distance of the critical section for one-way shear failure is equal to
 - (a) zero from the periphery of the column.
 - (b) d from column face.
 - (c) d/2 from column face.
 - (d) None of the above.

Where d is the effective depth of the footing slab.

- 21. A footing is to be designed for an RCC column carries a load of 850 kN. The safe bearing capacity of soil is 190 kN/m². The area required for the footing shall be
 - (a) 4.92 m^2
- (b) 2.47 m^2
- (c) 7.38 m^2
- (d) 6.71 m^2
- 22. When shear reinforcement is not provided in the footing, the maximum permissible shear stress at the critical section for determining the depth of a square footing by two-way shear in limit state method of design is taken as
 - $(a) \quad 0.25\,\sqrt{\frac{f_{ck}.k_s}{2}}$
 - (b) $0.16\sqrt{f_{ck}}$
 - (c) $0.25\sqrt{f_{ck}}$
 - (d) $0.16\sqrt{f_{ck},k_s}$

Where f_{ck} is compressive characteristic strength of concrete and the value of k_s is 1.

- 23. फूटिंग वो एक ही स्तम्भ के लिए बनायी
 - (a) 🛮 ट्टिका
 - (b) चटाई
 - (c) संयुक्त
 - (d) विलिधित
- 24. मृदा को क्षैति॥ आलम्ब प्रदान करने हेतु निम्न दीवार बनाते हैं -
 - (a) विभाग क दीवार
 - (b) प्रतिधारक दीवार
 - (c) ब्रेस्ट दीवार
 - (d) चार दीवारी
- 25. प्रतिधारक दीवार की स्थिरता की शर्त हो सकती है-
 - (a) उलटने की प्रतिसुरक्षित
 - (b) सरकने के प्रतिस्रिक्त
 - (c) धंसने की प्रतिसुरिवत
 - (d) उपरोक्त सभी
- 26. प्रतिधारक दीवार की हील स्लैंब में प्रबलन की आवश्यकता होती है -
 - (a) तली के रेशों में
 - (b) मध्य रेशों में
 - (c) उग्री रेशों में
 - (d) 30 रोक्त में से कोई नहीं

- 23. The footing which is provided under a single column is called as
 - (a) strip
 - (b) mat
 - (c) combined
 - (d) isolated
- 24. The wall meant to support soil horizontally is called
 - (a) partition wall
 - (b) retaining wall
 - (c) breast wall
 - (d) boundary wall
- 25. The condition(s) of stability of a retaining wall may be
 - (a) safe against overturning
 - (b) safe against sliding
 - (c) safe against subsidence
 - (d) All of the above
- 26. In heel slab of an RCC cantilever retaining wall, the reinforcement is required is
 - (a) bottom fibres
 - (b) mid fibres
 - (c) top fibres
 - (d) None of the above

- 27. प्रतिधारक दीवार की आधार स्लैब की मोटाई स्टैम की ऊंचाई का _____ हो सकती है।
 - (a) $\frac{1}{10}$
 - (b) $\frac{1}{5}$
 - (c) $\frac{1}{4}$
 - (d) $\frac{1}{15}$
- 28. पूर्व प्रतिबलन समाप्त करता है -
 - (a) तनन प्रतिबल
 - (b) सम्पीडन प्रतिबल
 - (c) धारण प्रतिबल
 - (d) कर्तन प्रतिबल
- 29. आर.सी.सी. अवयवां की तुलना में पूर्ण प्रतिबलित कंक्रीट अवयव -
 - (a) ज्यादा मोटे होते हैं।
 - (b) ्ज्यादा 🛮 तले होते हैं।
 - (c) ज्यादा छोटे होते हैं।
 - (d) ज्यादा भारी होते हैं।
- 30. पूर्वतनन पदित में पूर्व प्रतिबलों की कुल हानि होती है -
 - (a) 제 위 10%
 - (b) না **সা** 15%
 - (c) লা **সা**া 18%
 - (d) লা **সা**া 5%

- 27. Retaining wall's base slab's thickness in terms of stem's height may be
 - (a) $\frac{1}{10}$
 - (b) $\frac{1}{5}$
 - (c) $\frac{1}{4}$
 - (d) $\frac{1}{15}$
- 28. Prestressing can eliminate
 - (a) tensile stresses
 - (b) compressive stress
 - (c) bearing stresses
 - (d) shear stresses
- 29. In comparison to RCC elements, the prestressed concrete elements are
 - (a) thicker
 - (b) thinner
 - (c) shorter
 - (d) heavier
 - 30. The total losses of prestresses in pretensioning system is about
 - (a) 10%
 - (b) 15%
 - (c) 18%
 - (d) 5%

CC303/CE303

Roll No.:

2016

DESIGN OF R.C.C. STRUCTURE

PART-H

निर्घारित समय : तीन घंटे]

Time allowed: Three Hours]

[अधिकतम अंक : 70

[Maximum Marks: 70

मोट : (i) प्रथम प्रश्न अनिवार्य है, शेष में से किन्हीं पाँच के उत्तर दीजिये।

Note: Question No. 1 is compulsory, answer any five questions from the remaining.

- (ii) प्रत्येक प्रश्न के सभी भागों को क्रमवार एक साथ हल कीजिए। Solve all parts of a question consecutively together.
- (iii) प्रत्येक प्रश्न को नये पृष्ठ से प्रारम्भ कीजिए। Start each question on a fresh page.
- (iv) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- (v) जहाँ आवश्यक हो वहाँ आँकड़े मान लीजिये। Assume suitable data, wherever necessary.
- 1. निम्नलिखित प्रश्नों के संक्षिप्त में उत्तर दीजिये :

Answer the following questions briefly:

- (i) कंक्रीट के लिये आंशिक सुरक्षा गुणांक का मान स्टील के आंशिक सुरक्षा गुणांक से ज्यादा क्यों लिया जाता है ?
 - Why is partial safety factor for concrete taken more than the partial safety factor for steel?
- (ii) स्लैब में वितरण प्रबलन की आवश्यकता को समझाइये । Explain the necessity of distribution reinforcement in slabs.
- (iii) दीर्घ स्तम्भ एवं लघु स्तम्भ में अन्तर स्पष्ट कीजिये । Differentiate between long column and short column.
- (iv) विभिन्न प्रकार की सीमान्त अवस्थाओं के नाम लिखिये। Write down the names of different types of limit state.
- (v) पूर्व प्रतिबलित कंक्रीट के सिद्धान्त को समझाइये । Explain the principle of pre-stressed concrete.

 (2×5)

2. •(i) मिम्नलिखित आँकड़ों के लिये टी-धरन का प्रतिरोध आघूर्ण ज्ञात कीजिये :

Determine the moment of resistance of a T-beam for the following data:

फ्लैंज की प्रभावी चौड़ाई = 1620 mm

Effective width of flange = 1620 mm

फ्लैंज की मोटाई = 120 mm

Thickness of flange = 120 mm

प्रभावी गहराई = 580 mm

Effective depth = 580 mm

वेब की चौड़ाई = 300 mm

Web width = 300 mm

स्टील का क्षेत्रफल = 2513 mm^2

Area of steel = 2513 mm^2

M-20 ग्रेड कंक्रीट एवं Fe-415 स्टील का उपयोग करें ।

Use M-20 grade of concrete and Fe-415 steel. (8)

(ii) दोहरे प्रबलित खण्डों को किन परिस्थितियों में उपयोग में लिया जाता है ?

In what circumstances doubly reinforced sections are used? (4)

3. एक एकल प्रबलित धरन का अभिकल्पन कर्तन प्रबलन सहित निम्न आँकड़ों के आधार पर कीजिए :

Design a singly reinforced beam including shear reinforcement on the basis of the following data:

स्पष्ट विस्तृति (Clear span) = 5m

आधार की चौड़ाई (Support width) = 350 mm

अध्यारोपित भार (Super imposed load) = 10 kN/m

M-20 ग्रेड कंक्रीट एवं Fe-415 स्टील का उपयोग करें।

Use M-20 grade of concrete and Fe-415 Steel.

(12)

4. एक कक्ष के लिये जिसका आन्तरिक नाप $6.0~\text{H}~\times~4.5~\text{H}~$ है, एक शुद्ध आलिम्बित स्लैब अभिकिल्पित कीजिये । इस स्लैब पर चलभार $4~\text{kN/m}^2$ है एवं स्लैब के सभी कोने उठने के लिये स्वतंत्र है । M-20 श्रेणी की कंक्रीट एवं Fe-415 श्रेणी के इस्पात का उपयोग कीजिये ।

Design a simply supported slab for a room having internal size $6.0 \text{ m} \times 4.5 \text{ m}$. Live load on this slab is 4 kN/m^2 and all the corners of the slab are free to lift. Use M-20 grade of concrete and Fe-415 grade of steel. (12)

5. 1500 kN का अक्षीय भार उठाने के लिये वर्गाकार लघु स्तम्भ का अभिकल्पन कीजिये । अभिकल्पित स्तम्भ के काट परिच्छेद, जिसमें प्रबलन का ब्यौरा दर्शाया गया हो, बनाइये । M-20 श्रेणी की कंक्रीट एवं Fe-415 श्रेणी का इस्पात उपयोग में लीजिये ।

Design a short square column for carrying 1500 kN axial load. Draw the cross section of column showing reinforcement detail. Use M-20 grade of concrete and Fe-415 grade of Steel. (12)

(6)

एक वर्गाकार स्तम्भ के लिये एक समान मोटाई की एकांकी फुटिंग का अभिकल्पन कीजिये । स्तम्भ पर 1200 kN का अक्षीय भार कार्य कर रहा है । तथा स्तम्भ 500 mm imes 500 mm का वर्गाकार खण्ड है । मुदा की धारण क्षमता 100 kN/m² है । M-25 श्रेणी की कंक्रीट एवं Fe-415 श्रेणी का इस्पात उपयोग में -लीजिये ।

Design an isolated square footing of uniform thickness of a square column. The column is carrying an axial load of 1200 kN and column is square in cross-section of size 500 mm \times 500 mm. The safe bearing capacity of the soil is 100 kN/m². Use M-25 grade of concrete and Fe-415 grade of steel. (12)

- विभिन्न प्रकार की पुश्ता दीवारों का वर्णन चित्र की सहायता से कीजिये । 7. Describe the various types of retaining wall with the help of neat sketch. (6) पुश्ता दीवार की स्थिरता से आप क्या समझते हैं ? चित्र की सहायता से समझाइये । What do you understand by the stability of retaining wall? Explain with the help of neat sketch.
- पूर्व प्रतिबलित कंक्रीट के लाभ तथा हानियों की व्याख्या कीजिये । 8. Discuss the advantages and disadvantages of pre-stressed concrete. **(8)** पूर्व प्रतिबलित कंक्रीट में उपयोग में ली जाने वाली पूर्व तनन एवं पश्च तनन विधि में अन्तर स्पष्ट
 - कीजिये । Explain the differences in between pre-tensioning and post-tensioning method to be used for pre-stressed concrete. **(4)**