CS202/IT202

Roll No.:....

2016

COMPUTER SYSTEM ARCHITECTURE

PART-I

निर्धारित समय : 1/2 घंटा]

Time allowed: 1/2 Hour]

अधिकतम अंक : 30

[Maximum Marks: 30

नोट : (i) सभी प्रश्न अनिवार्य हैं एवं प्रत्येक प्रश्न 1 अंक का है।

Note:

All Questions are compulsory and each question is of 1 mark.

- (ii) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- 1. वॉन न्यूमान्त आर्किटेक्चर है
 - (a) SISD
 - (b) SIMD
 - (c) MIMD
 - (d) MISD
- 2. रिजस्टर एड्रेसिंग मोड में ऑपरेन्ड स्थित होते हैं
 - (a) कैश में
 - (b) द्वितीयक स्टोरेज में
 - (c) सीपीयू में
 - (d) प्राइमरी मेमोरी में
- 3. इम्प्लाइड एड्रेसिंग का उदाहरण है
 - (a) स्टैक एड्रेसिंग
 - (b) इमीडिएट एड्रेसिंग
 - (c) इनडायरेक्ट एड्रेसिंग
 - (d) इनमें से कोई नहीं

- 1. Von Neumann architecture is
 - (a) SISD
 - (b) SIMD
 - (c) MIMD
 - (d) MISD
- 2. In register addressing mode operands are looked at
 - (a) In cache
 - (b) In secondary storage
 - (c) In CPU
 - (d) In primary memory
- 3. The example of implied addressing is
 - (a) Stack addressing
 - (b) Immediate addressing
 - (c) Indirect addressing
 - (d) None of these

- 4. सामान्यतः डिजिटल कम्प्यूटर आधारित होते हैं
 - (a) AND और OR gate
 - (b) NAND और NOR gate
 - (c) NOT gate
 - (d) इनमें से कोई नहीं
- 5. कम्प्यूटर का ALU यूनिट सम्पादित करता है
 - (a) जोड़, घटाव क्रियाएँ
 - (b) सभी अंकगणितीय क्रियाएँ
 - (c) AND, OR और गुणन क्रियाएँ
 - (d) सभी अंकगणितीय और तार्किक क्रियाएँ
- 6. एक CPU के पास 16 बिट प्रोग्राम काउण्टर है। इसका अर्थ हुआ कि CPU एड्रेस कर सकता है
 - (a) 16 k मेमोरी लोकेशन
 - (b) 32 k मेमोरी लोकेशन
 - (c) 64 k मेमोरी लोकेशन
 - (d) 256 k मेमोरी लोकेशन
- 7. CPU बना होता है
 - (a) ALU, CU और रजिस्टर्स
 - (b) ALU और CU
 - (c) ALU, CU और हार्ड डिस्क
 - (d) ALU, CU और मोनिटर
- 8. कैश मेमोरी किसके मध्य स्थित होते हैं ?
 - (a) CPU और RAM
 - (b) RAM और ROM
 - (c) CPU और हार्ड डिस्क
 - (d) इनमें से कोई नहीं
- 9. 1 बिट डाटा स्टोर करने वाला सर्किट कहलाता है
 - (a) इनकोडर
 - (b) OR gate
 - (c) फ्लिप-फ्लोप
 - (d) डिकोडर

- 4. Normally digital computers are based on
 - (a) AND and OR gate
 - (b) NAND and NOR gate
 - (c) NOT gate
 - (d) None of these
- 5. ALU unit of a computer performs
 - (a) addition, subtraction operations
 - (b) all types of arithmetic operations.
 - (c) AND, OR and multiplication operations.
 - (d) all arithmetic and logical operations.
- A CPU has 16 bit program counter.
 This means that the CPU can address
 - (a) 16 k memory locations
 - (b) 32 k memory locations
 - (c) 64 k memory locations
 - (d) 256 k memory locations
- 7. CPU consists of
 - (a) ALU, CU and registers
 - (b) ALU and CU
 - (c) ALU, CU and Hard Disk
 - (d) ALU, CU and Monitor
- 8. Cache memory resides in between
 - (a) CPU and RAM
 - (b) RAM and ROM
 - (c) CPU and Hard Disk
 - (d) None of these
- The circuit used to store one bit of data is known as
 - (a) Encoder
 - (b) OR gate
 - (c) Flip-Flop
 - (d) Decoder

- 10. कम्प्यूटर में घटाव की क्रियाएँ सामान्यतः किये जाते हैं
 - (a) 9's कम्प्लीमेन्ट्स
 - (b) 10's कम्प्लीमेन्ट्स
 - (c) 1's कम्प्लीमेन्ट्स
 - (d) 2's कम्प्लीमेन्ट्स
- 11. फ्लोटिंग प्वाइंट चित्रण संग्रहित करता है
 - बुलियन वेल्यू (a)
 - (b) सम्पूर्ण संख्या
 - वास्तविक वेल्य (c)
 - (d) इंटिजर्स
- 12. मेमोरी में किसी खास स्टोरेज लोकेशन तक पहुँचने तथा उसके कंटेन्ट को प्राप्त करने में लगा हुआ औसत समय कहलाता है
 - सीक समय (a)
 - (b) टर्न-एराउण्ड समय
 - (c) एक्सेस समय
 - ट्रांसफर समय (d)
- 13. ADD AX, [SI] टाइप इन्स्ट्रक्शन के लिए एड्रेस मोड है
 - (a) एबसोल्यूट
 - (b) इनडायरेक्ट
 - (c) इन्डेक्स
 - (d) इनमें से कोई नहीं
- 14. कैश मेमोरी का विचार आधारित होता है
 - लोकैलिटी ऑफ रिफरेंस पर (a)
 - 90-10 रूल पर (b)
 - (c) क्लस्टर पर
 - (d) उपर्युक्त सभी

- In computer, subtraction is generally carried out by
 - 9's compliments

(3)

- 10's compliments (b)
- 1's compliments (c)
- 2's compliments (d)
- Floating point representation is used to store
 - Boolean values (a)
 - Whole numbers (b)
 - Real values (c)
 - **Integers** (d)
- The average time required to reach a 12. particular storage location in memory and obtain its contents is called the
 - (a) seek time
 - (b) turnaround time
 - access time (c)
 - transfer time (d)
- The address mode used in an 13. instruction of the form ADD AX, [SI] is
 - Absolute (a)
 - **Indirect** (b)
 - Index (c)
 - None of these
 - The idea of cache memory is based
 - (a) on locality of reference
 - on 90-10 rule (b)
 - on cluster (c)
 - All of the above (d)

P.T.O.

15 .	मेमोरी मैप्ड	I/O सिस्टम	में क्या न	हीं होता है १
		20111/64	7 441 7	C 6 1010 B 7

- (a) LDA
- (b) SUB
- (c) ADD
- (d) CMP

16. इनमें से कौन इनपुट डिवाइस नहीं है?

- (a) माउस
- (b) की-बोर्ड
- (c) लाइट पेन
- (d) मोनीटर

17. इनमें से कौन इनपुट डिवाइस है ?

- (a) स्कैनर
- (b) स्पीकर
- (c) CD
- (d) प्रिंटर

18. कम्प्यूटर को किसी खास क्रिया को निर्देशित करने वाला बिट का समूह कहलाता है

- (a) इन्स्ट्रक्शन कोड
- (b) माइक्रो ऑपरेशन
- (c) एकुमुलेटर
- (d) रजिस्टर

19. एडजैसेण्ट बिट्स के बीच समयांतराल कहलाता है

- (a) वर्ड-समय
- (b) बिट-समय
- (c) टर्न-एराउण्ड समय
- (d) स्लाइस समय

- 15. In a memory mapped I/O system, which of the following will not be there?
 - (a) LDA
 - (b) SUB
 - (c) ADD
 - (d) CMP
- 16. Which of the following is not an input device?
 - (a) Mouse
 - (b) Keyboard
 - (c) Light Pen
 - (d) Monitor
- 17. Which of the following is an input device?
 - (a) Scanner
 - (b) Speaker
 - (c) CD
 - (d) Printer
- 18. A group of bits that tell the computer to perform a specific operation is known as
 - (a) Instruction code
 - (b) Micro operation
 - (c) Accumulator
 - (d) Register
- 19. The time interval between adjacent bits is called
 - (a) Word-time
 - (b) Bit-time
 - (c) Turnaround time
 - (d) Slice time

- 20. K बिट फिल्ड उल्लेखित करता है
 - (a) 3k रजिस्टर
 - (b) 2k रजिस्टर
 - (c) k2 रजिस्टर
 - (d) k3 रजिस्टर
- 21. MIMD कहलाता है
 - (a) मल्टीपल इन्स्ट्रक्शन मल्टीपल डाटा
 - (b) मल्टीपल इन्स्ट्रक्शन मेमोरी डाटा
 - (c) मेमोरी इन्स्ट्रक्शन मल्टीपल डाटा
 - (d) मल्टीपल इन्फोर्मेशन मेमोरी डाटा
- 22. इनपुट और आउटपुट समूह के साथ लॉजिक गेट के व्यवस्था को कहते हैं
 - (a) कम्प्युटेशनल सर्किट
 - (b) लॉजिक सर्किट
 - (c) डिजाइन सर्किट
 - (d) रजिस्टर
- 23. बाइनरी डाटा को डेसिमल में रूपांतरित करने वाला सर्किट कहलाता है
 - (a) इनकोडर
 - (b) मल्टीप्लेक्सर
 - (c) डिकोडर
 - (d) कोड कन्वर्टर
- 24. एक तीन इनपुट वाला NOR गेट, तार्किक उच्च आउटपुट प्रदान करता है, जब
 - (a) एक इनपुट उच्च हो
 - (b) एक इनपुट निम्न हो
 - (c) दो इनपुट निम्न हो
 - (d) सभी इनपुट उच्च हो

- 20. K bit field specify any one of
 - (a) 3k register
 - (b) 2k register
 - (c) k2 register
 - (d) k3 register
- 21. MIMD stands for
 - (a) Multiple instruction multiple data.
 - (b) Multiple instruction memory data.
 - (c) Memory instruction multiple data.
 - (d) Multiple information memory data.
- 22. Logic gates with a set of input and outputs is arrangement of
 - (a) computational circuit
 - (b) logic circuit
 - (c) design circuit
 - (d) register
- 23. The circuit converting binary data into decimal is
 - (a) Encoder
 - (b) Multiplexer
 - (c) Decoder
 - (d) Code converter
- 24. A three input NOR gate gives logic high output only when
 - (a) one input is high
 - (b) one input is low
 - (c) two inputs are low
 - (d) all inputs are high

- 25. पाइपलाइनिंग प्रोसेस में होता है
 - (a) इन्स्ट्रक्शन एकिजक्युशन
 - (b) इन्स्ट्रक्शन प्रिफेच
 - इन्स्ट्रक्शन डिकोडिंग (c)
 - इन्स्ट्रक्शन मैनिपुलेशन (d)
- 26. ''डिलेड-लोड'' का उपयोग किया जाता है
 - (a) प्रोसेसर-प्रिण्टर कम्युनिकेशन
 - मेमोरी-मोनिटर कम्युनिकेशन (b)
 - पाइपलाइनिंग (c)
 - इनमें से कोई नहीं (d)
- पैरेलल प्रोसेसिंग घटित होता है 27.
 - इन्स्ट्रक्शन स्ट्रीम में (a)
 - डाटा स्ट्रीम में (b)
 - (c) (a) तथा (b) में
 - इनमें से कोई नहीं (d)
- पेरेलल प्रोसेसिंग का कीमत निर्धारित किया जाता है 28.
 - टाइम कम्पलेक्सिटी (a)
 - स्विचिंग कम्पलेक्सिटी (b)
 - सर्किट कम्पलेक्सिटी (c)
 - इनमें से कोई नहीं (d)
- RISC का अभिलक्षण है 29.
 - तीन इन्स्ट्रक्शन्स प्रति चक्र (a)
 - दो इन्स्ट्रक्शन्स प्रति चक्र (b)
 - एक इन्स्ट्रक्शन प्रति चक्र (c)
 - इनमें से कोई नहीं (d)
- CISC का अभिलक्षण है 30.
 - फिक्स्ड फार्मेट इन्स्ट्रक्शन (a)
 - (b) चर फार्मेट इन्स्ट्रवशन
 - हार्डवेयर के द्वारा निष्पादित इन्स्ट्रक्शन (c)
 - इनमें से कोई नहीं

Pipelining process is 25.

(6)

- instruction execution (a)
- instruction prefetch **(p)**
- instruction decoding (c)
- instruction manipulation (d)
- "Delayed-load" is used for 26.
 - processor-printer communication
 - memory-monitor communication **(b)**
 - pipelining (c)
 - None of these (d)
- Parallel processing may occur
 - in the instruction stream (a)
 - in the data stream **(b)**
 - (c) in the (a) and (b)
 - None of these (d)
- The cost of parallel processing is 28. determined by
 - (a) time complexity
 - switching complexity **(b)**
 - circuit complexity (c)
 - None of these (d)
 - Characteristic of RISC is 29.
 - three instructions per cycle (a)
 - two instructions per cycle (b)
 - one instruction per cycle (c)
 - None of these (d)
 - Characteristic of CISC is 30.
 - Fixed format instruction (a)
 - Variable format instruction **(b)**
 - Hardware executed instruction (c)
 - None of these (d)

CS202/IT202

Roll No.:

2016

COMPUTER SYSTEM ARCHITECTURE

निर्धारित समय : तीन घंटे]

Time allowed: Three Hours]

[अधिकतम अंक : 70

[Maximum Marks: 70

नोट : (i) प्रथम प्रश्न अनिवार्य है, शेष में से किन्हीं पाँच के उत्तर दीजिये।

Note: Question No. 1 is compulsory, answer any five questions from the remaining.

- (ii) प्रत्येक प्रश्न के सभी भागों को क्रमवार एक साथ हल कौजिए। Solve all parts of a question consecutively together.
- (iii) प्रत्येक प्रश्न को नये पृष्ठ से प्रारम्भ कीजिए। Start each question on a fresh page.
- (iv) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- 1. निम्न के उत्तर लिखिए :

Write the answer of following:

- (i) MBR एवं MAR रजिस्टर क्या है ? What is MBR and MAR register?
- (ii) फुल ड्रूपलेक्स कम्यूनिकेशन को उदाहरण सहित समझाइये। Explain full duplex communication with example.
- (iii) आभासी मेमोरी क्या है ? What is virtual memory ?
- (iv) किन्हीं पाँच लॉजिक माइक्रो ऑपरेशन के नाम सूचीबद्ध कीजिए। Enlist any five logic micro operations.
- (v) पाइपलाइनिंग क्या होती है ? What is pipelining ?

 (2×5)

CSZ	U2/114	W2	
2.	(i)	कम्प्यूटर के आवश्यक कम्पोनेन्ट दर्शाते हुए 'वान न्यूमान आर्किटेक्चर' आरेखित कीजिए । कम्पोनेन्ट का कार्य भी बताइये ।	
	. •	Draw the 'Von Neumann Architecture' of computer showing its esse	ential
		components. Give function of each component.	
	(ii)	शिफ्ट माइक्रो ऑपरेशन्स को समझाइये ।	(6.6)
		Explain shift micro operations.	(6+6)
3.	· (i)	कम्प्यूटर ऑरगेनाइजेशन की इन्स्ट्रक्शन साइकल को समझाइये ।	
	(ii)	Explain instruction cycle of computer organization. विभिन्न एड्रेसिंग स्कीम्स को समझाइये ।	
•		Explain various addressing schemes.	(6+6)
4.	(i)	अर्थमेटिक प्रोसेसर में प्रयुक्त जोड़ने एवं घटाने के किसी एलगोरिथम को समझाइये ।	
		Explain any addition and subtraction algorithm used in Arithmetic Processo	r.
	(ii)	विभिन्न फ्लोटिंग पोइंट ऑपरेशन को समझाइये ।	
		Explain different floating point operations.	(6+6)
5.	(i)	स्टेक ऑर्गेनाईजेशन क्या है ? समझाइये ।	
	(ii)	What is stack organization ? Explain. मल्टीम्रोसेसर ऑरगेनाइजेशन को समझाइये ।	• . • • • • • • • • • • • • • • • • • •
	()	Explain Multiprocessor organization.	(6+6)
6.	(i)	केश मेमोरी क्या होती है ? इसको समझाइये ।	
·	(ii)	What is Cache memory ? Explain it. प्रोसेसर बस संगठन को समझाइये ।	
		Explain processor bus organization.	(6+6)
7.	(i)	उचित उदाहरण की सहायता से समानान्तर प्रोसेसर की कार्यप्रणाली समझाइये ।	
		Explain the working of parallel processor with suitable example.	
	(ii)		(6+6)
		Explain various computer instruction formats.	(0 - 1)
8.		न पर संक्षिप्त टिप्पणियाँ लिखिए :	
		rite short notes on following:	
	(i)	· · · · · · · · · · · · · · · · · · ·	
	(ii	Generations of Computer) डी.एम.ए.	. •
	(π	DMA	r.
	<i>(</i> 44	i) फ्लाइन वर्गीकरण	
:	ıπ)	Flynn's classification	(4+4+4)
٠.		riyim s classification	