RE3004

Roll	No.	:	

Nov. 2022

FLUID MECHANICS

निर्धारित समय : 3 घंटे]

अधिकतम अंक: 60

[Maximum Marks: 60

Time allowed: 3 Hours

प्रश्न-पत्र में **तीन** सेक्शन **ए, बी** एवं **सी** हैं।

नोट : There are THREE sections in the paper A, B and C. Note:

- **सेक्शन ए** में **प्रश्न संख्या** 1 के **सभी** 10 भागों के उत्तर दीजिए। प्रत्येक भाग **एक** अंक का है एवं (ii) सभी 10 भाग वस्तुनिष्ठ प्रकार के प्रश्नों के हैं। Answer all the 10 parts of the question No. 1 in Section A. Each part carries one mark and all 10 parts have objective type questions.
- सेक्शन बी के 8 प्रश्नों में से किन्हीं 6 प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न 3 अंक का है एवं (iii) इनका 5 **लाइन / 50 शब्दों** में उत्तर दीजिए। Answer any 6 questions out of the 8 questions in Section B. Each question carries 3 marks and to be answered within 5 lines / 50 words.
- सेक्शन सी के 6 प्रश्नों में से किन्हीं 4 प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न 8 अंक का है एवं इनका 15 **लाइन /** 150 **शब्दों** में उत्तर दीजिए। Answer any 4 questions out of the 6 questions in Section C. Each question carries 8 marks and to be answered within 15 lines / 150 words.
- प्रत्येक सेक्शन के **सभी** प्रश्नों को क्रमवार एक साथ हल कीजिए। (v) Solve all the questions of a section consecutively together.
- दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.

सेक्शन - ए

Section - A

- मानक ताप व दाब पर द्रव का इकाई आयतन का द्रव्यमान -1.
 - आपेक्षिक भार (a)

आपेक्षिक घनत्व (b)

द्रव्यमान घनत्व

कोई नहीं (d)

The mass per unit volume of a liquid at standard temperature and pressure is -

- Specific weight (a)
- Specific gravity (b)
- Mass density (c)
- None of the above (d)

(ii)	गिरती हुई पानी की बूँद गोल आकार _	के	कारण लेती है।				
	(a) पृष्ठ तनाव	(b)	संपीड्यता	-			
	(c) श्यानता	(d)	केशिकत्व				
	The falling drop of a water take						
	(a) Surface Tension	(b)	Compressibility				
	(c) Viscosity	(d)	Capillarity				
(iii)	1 पास्कल का मान है -	T C . T					
()	2	(l ₂)	1 l-NI/2				
			1 kN/m^2				
	(c) 1 Mn/m^2	(d)	कोई नहीं				
	1 Pa is equal to						
	(a) 1 N/m^2	(b)	1 kN/m^2				
	(c) 1 Mn/m^2	(d)	None of the above				
(iv)	निरपेक्ष दाब है -						
()	(a) प्रमापी दाब – वायुमण्डलीय दाव	ब (b)	प्रमापी दाब + निर्वात दाब				
	(c) वायुमण्डलीय दाब + प्रमापी दा						
	Absolute pressure is –	4 (a)	पायुमण्डलाय दाय – प्रमापा दाय				
		phorio Dr	accura				
	(a) Gauge Pressure – Atmosp(b) Gauge Pressure + Vacuum		essure				
	(c) Atmospheric Pressure + (
	(d) Atmospheric Pressure – (
(v)	सांतत्य समीकरण आधारित है						
()	(a) ऊर्जा संरक्षण		द्रव्यमान संरक्षण				
	(c) संवेग संरक्षण		उपरोक्त सभी				
	Continuity equation is based on		Transfer of Vita				
	(a) Energy conservation	(b)	Mass conservation				
	(c) Momentum conservation		All of the above				
(vi)							
HO DON	(a) एकसमान प्रवाह	(b)	धारारेखीय प्रवाह				
	0 m		संपीड्य प्रवाह				
			particles at all sections of the pi	na ara agual			
	is called –	i iiquia p	barticles at all sections of the pi	be are equal,			
	(a) Uniform flow	(b)	Streamline flow				
	(c) Steady flow	(d)	Compressible flow				
(vii)	बरनॉली समीकरण के अनुसार	n Edy	in the state in the state of				
	e deficience in hours to		n v				
	(a) $z+p+v=c$	(b)	$z + \frac{p}{w} + \frac{v}{g} = c$				
			w g				
	$p v^2$	a mila	$p v^2$				
	(c) $z + \frac{p}{w} + \frac{v^2}{g} = c$	(d)	$z + \frac{P}{2} + \frac{1}{2} = c$				
			W 2g				
	According to Bernoulli's equation						
	(a) $z+n+v=c$	(h)	$z + \frac{p}{r} + \frac{v}{r} = c$				
	(a) $z+p+v=c$	(0)	$z + \frac{p}{w} + \frac{v}{g} = c$				
	VII 2 10 offloods						
	(c) $z + \frac{p}{w} + \frac{v^2}{g} = c$	(d)	$z + \frac{p}{v} + \frac{v}{v} = c$				
	w g	(-)	w 2g				

(viii) बहुते द्रव के को नापने के	लिये वेन्चुरीमा	पी काम आती है।	
(3)	(a) वेग	(b) (d)	दाब उपरोक्त सभी	
	A venturimeter is used to me (a) velocity		of flowing liquid. pressure All of the above	
(i	(c) discharge x) जेट के प्रधार संकोच पर सैद्धान्तिक		numprio nuo sassona	
	(a) $\sqrt{2g} h$	(b)	$2\sqrt{g} h$	
	(c) $2g\sqrt{h}$ जहाँ, $h = \hat{J}$ ट संकोच पर शीर्ष	(d)	2gh	
	The theoretical velocity of t	he jet at Ver	na contracta	
	(a) $\sqrt{2g}$ h	(b)		
	(c) $2g\sqrt{h}$ where, $h = \text{head at Vena co}$	(d)	2gh	
(x) ऑरिफिस को बडा कहा जायेगा,	यदि		
(*)	(a) $H = 5\sqrt{d}$ (c) $H > 5d$	(b) (d)	H < 5d उपरोक्त में से कोई नहीं	
	जहाँ, $H = \overline{\text{ज}}$ जार्मी $\frac{1}{2}$ d $\frac{1}{2}$ An orifice is said to be larged (a) $H = 5\sqrt{d}$ (c) $H > 5d$ where, $H = \text{water head}$, $d = \frac{1}{2}$	ge if – (b) (d)	None of the above	(1×10)
		सेक्शन – ब Section –		
2.	आपेक्षिक भार तथा आपेक्षिक घनत्व में Differentiate between specific w	eight and sp	pecific gravity.	
3.	दाब तीव्रता से आप क्या समझते हैं ? इ What do you understand by the	सकी इकाई लि term pressu	खो । re intensity ? State its unit.	(3)
4.	Dilleren			
	Uniform & Non-uniform			
	(ii) स्थिर तथा अस्थिर प्रवाह Steady and Unsteady flov	v		(1½+1½)
				P.T.O.

RE3	E3004 (4 of 4)	7	270
5.	समग्र शीर्ष से आप क्या समझते हैं ? बहते द्रव के लिए समग्र शीर्ष तथा समग्र उ	र्जा में अन्तर स्पष्ट करो ।	
	What do you understand by total head? Clarify the difference and total head for a flowing fluid.		(3)
6.	बार्डन दाब मापी का सचित्र वर्णन करो ।		
	Describe Bourdon's tube pressure gauge with diagram.		(3)
7.	वेन्चुरीमापी को सचित्र समझाओ ।		
	Explain Venturimeter with diagram.		(3)
8.	ऑरिफिस मीटर क्या है ? विभिन्न प्रकार के ऑरिफिस मीटर को समझाइये। What is Orificemeter ? Explain different types of Orificemeter.	rigity my	(+2)
9.	पाइप में प्रवाह के दौरान व्यास में आकस्मिक वृद्धि के कारण शीर्ष क्षति को सम	द्याओ ।	
	Explain loss of head due to sudden enlargement in diameter in fi		(3)
	सेक्शन — सी		
	Section - C	U - 95.	
10.). साधारण 'U' नली दाबमापी तथा भेदसूचक 'U' नली दाबमापी को सचित्र सम	झाओ ।	
	Explain simple 'U' tube manometer and differential 'U' t diagrams.	ube manometer with	(8)
11.	 सांतत्य समीकरण को समझाओ एवं इसकी मान्यताओं को लिखो । 		
100	Describe continuity equation with its assumptions.		(8)
12.	2. जेट प्रधार संकोच क्या है ? मुख (ऑरिफिस) के विभिन्न द्रवीय गुणांकों के	परिभाषित करते हुए उनम	ř

 जेट प्रधार संकोच क्या है ? मुख (ऑरिफिस) के विभिन्न द्रवीय गुणांकों को परिभाषित करते हुए उनमें सम्बन्ध ज्ञात करो ।

What is Vena-Contracta? Describe different hydraulic coefficients and find out relationship between them for orifice. (8)

- 13. पीटॉट ट्यूब की कार्यप्रणाली को सचित्र समझाओ । प्रवाह वेग ज्ञात करने में इसे कैसे उपयोग में लेते हैं ? Explain the working of Pitot tube with diagram. How is it used to measure flow velocity?
 (8)
- 14. पाइप में प्रवाहित द्रव में होने वाली शीर्ष हानि के लिये चेजी के सूत्र को समझाओ।
 Explain Chezy's formula for finding head loss in flowing liquid in pipes. (8)
- 15. 20 से.मी. व्यास के पाइप में 10 से.मी. व्यास की ऑरिफिस, ऑरिफिस मीटर में डाली जाती है । ऑरिफिस प्रवाह के पहले व बाद लगाये गये दाब गेज की रीडिंग क्रमशः $19.62~\mathrm{N/cm^2}$ व $9.81~\mathrm{N/cm^2}$ हैं । पाइप में जल का प्रवाह ज्ञात करें । $C_\mathrm{d}=0.6~\mathrm{cd}$ ं। An orificemeter with orifice diameter $10~\mathrm{cm}$ is inserted in a pipe of $20~\mathrm{cm}$ diameter. The pressure gauge fitted upstream and down stream give readings of $19.62~\mathrm{N/cm^2}$ and $9.81~\mathrm{N/cm^2}$ respectively. Find discharge of water through pipe. Take $C_\mathrm{d}=0.6$. (8)

